Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(4): e12935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629580

RESUMO

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Leishmania , Parasitos , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia
2.
Microbes Infect ; : 105314, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38367661

RESUMO

Parasitic diseases remain a major global health problem for humans. Parasites employ a variety of strategies to invade and survive within their hosts and to manipulate host defense mechanisms, always in the pathogen's favor. Extracellular vesicles (EVs), membrane-bound nanospheres carrying a variety of bioactive compounds, were shown to be released by the parasites during all stages of the infection, enabling growth and expansion within the host and adaptation to frequently changing environmental stressors. In this review, we discuss how the use of existing nanotechnologies and high-resolution imaging tools assisted in revealing the role of EVs during parasitic infections, enabling the quantitation, visualization, and detailed characterization of EVs. We discuss here the cases of malaria, Chagas disease and leishmaniasis as examples of parasitic neglected tropical diseases (NTDs). Unraveling the EVs' role in the NTD pathogenesis may enormously contribute to their early and reliable diagnostic, effective treatment, and prevention.

3.
Biomedicines ; 12(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398037

RESUMO

Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.

4.
Trends Parasitol ; 39(11): 913-928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758631

RESUMO

Parasitic diseases continue to afflict millions of people globally. However, traditional vaccine development strategies are often difficult to apply to parasites, leaving an immense unmet need for new effective vaccines for the prevention and control of parasitic infections. As parasites commonly use extracellular vesicles (EVs) to interact with, interfere with, or modulate the host immune response from a distance, parasite-derived EVs may provide promising vaccine agents that induce immunity against parasitic infections. We here present achievements to date and the challenges and limitations associated with using parasitic EVs in a clinical context. Despite the many difficulties that need to be overcome, we believe this direction could offer a new and reliable source of therapeutics for various neglected parasitic diseases.

5.
J Invest Dermatol ; 143(12): 2494-2506.e4, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236596

RESUMO

Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.


Assuntos
Ataxia Telangiectasia , Humanos , Animais , Camundongos , Pigmentação da Pele/genética , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transdução de Sinais , Dano ao DNA , Fosforilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo
6.
EMBO Rep ; 24(5): e56114, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929726

RESUMO

Vesicular transport is a means of communication. While cells can communicate with each other via secretion of extracellular vesicles, less is known regarding organelle-to organelle communication, particularly in the case of mitochondria. Mitochondria are responsible for the production of energy and for essential metabolic pathways in the cell, as well as fundamental processes such as apoptosis and aging. Here, we show that functional mitochondria isolated from Saccharomyces cerevisiae release vesicles, independent of the fission machinery. We isolate these mitochondrial-derived vesicles (MDVs) and find that they are relatively uniform in size, of about 100 nm, and carry selective protein cargo enriched for ATP synthase subunits. Remarkably, we further find that these MDVs harbor a functional ATP synthase complex. We demonstrate that these vesicles have a membrane potential, produce ATP, and seem to fuse with naive mitochondria. Our findings reveal a possible delivery mechanism of ATP-producing vesicles, which can potentially regenerate ATP-deficient mitochondria and may participate in organelle-to-organelle communication.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Potenciais da Membrana , Mitocôndrias/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo
7.
PLoS Pathog ; 19(2): e1011140, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821560

RESUMO

Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.


Assuntos
Vesículas Extracelulares , Parasitos , Animais , Humanos , Parasitos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Transporte Biológico , Transporte Proteico , Mamíferos
8.
Parasit Vectors ; 16(1): 14, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639683

RESUMO

BACKGROUND: Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS: We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS: We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS: Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.


Assuntos
Genes de Protozoários , Plasmodium falciparum , Humanos , Antimaláricos/metabolismo , Malária , Plasmodium falciparum/genética , Reprodução
9.
Faraday Discuss ; 240(0): 127-141, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938388

RESUMO

Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.


Assuntos
Tomografia com Microscopia Eletrônica , Malária , Humanos , Heme/química , Heme/metabolismo , Malária/parasitologia , Lipídeos/química
10.
ACS Nano ; 16(8): 12276-12289, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35921522

RESUMO

The elucidation of viral-receptor interactions and an understanding of virus-spreading mechanisms are of great importance, particularly in the era of a pandemic. Indeed, advances in computational chemistry, synthetic biology, and protein engineering have allowed precise prediction and characterization of such interactions. Nevertheless, the hazards of the infectiousness of viruses, their rapid mutagenesis, and the need to study viral-receptor interactions in a complex in vivo setup call for further developments. Here, we show the development of biocompatible genetically engineered extracellular vesicles (EVs) that display the receptor binding domain (RBD) of SARS-CoV-2 on their surface as coronavirus mimetics (EVsRBD). Loading EVsRBD with iron oxide nanoparticles makes them MRI-visible and, thus, allows mapping of the binding of RBD to ACE2 receptors noninvasively in live subjects. Moreover, we show that EVsRBD can be modified to display mutants of the RBD of SARS-CoV-2, allowing rapid screening of currently raised or predicted variants of the virus. The proposed platform thus shows relevance and cruciality in the examination of quickly evolving pathogenic viruses in an adjustable, fast, and safe manner. Relying on MRI for visualization, the presented approach could be considered in the future to map ligand-receptor binding events in deep tissues, which are not accessible to luminescence-based imaging.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/química , Peptidil Dipeptidase A/metabolismo , Sítios de Ligação , Ligação Proteica , Vesículas Extracelulares/metabolismo , Imageamento por Ressonância Magnética
11.
Methods Mol Biol ; 2470: 133-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881344

RESUMO

Malaria is one the most devastating infectious diseases in the world: of the five malaria-associated parasites, Plasmodium falciparum and P. vivax are the most pathogenic and widespread, respectively. P. falciparum invades human red blood cells (RBCs), releasing extracellular vesicles (Pf-EV) carrying DNA, RNA and protein cargo components involved in host-pathogen communications in the course of the disease. Different strategies have been used to analyze Pf-EV biophysically and chemically. Atomic force microscopy (AFM) stands out as a powerful tool for rendering high quality images of extracellular vesicles. In this technique, a sharp tip attached to a cantilever reconstructs the topographic surface of the extracellular vesicles and probes their nano-mechanical properties based on force-distance curves. Here, we describe a method to separate Pf-EV using differential ultracentrifugation, followed by nanoparticle tracking analysis (NTA) to quantify and estimate the size distribution. Finally, the AFM imaging procedure on Pf-EV adsorbed on a Mg2+-modified mica surface is detailed.


Assuntos
Vesículas Extracelulares , Malária Falciparum , Malária , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Microscopia de Força Atômica , Plasmodium falciparum , Plasmodium vivax
12.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642585

RESUMO

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Assuntos
Vesículas Extracelulares , Malária , Parasitos , Animais , Eritrócitos/parasitologia , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparum
13.
PNAS Nexus ; 1(4): pgac156, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714848

RESUMO

Extracellular vesicles (EVs) transfer bioactive molecules between cells in a process reminiscent of enveloped viruses. EV cargo delivery is thought to occur by protein-mediated and pH-dependent membrane fusion of the EV and the cellular membrane. However, there is a lack of methods to identify the fusion proteins and resolve their mechanism. We developed and benchmarked an in vitro biophysical assay to investigate EV membrane fusion. The assay was standardized by directly comparing EV and viral fusion with liposomes. We show that EVs and retroviruses fuse with liposomes mimicking the membrane composition of the late endosome in a pH- and protein-dependent manner. Moreover, we directly visualize the stages of membrane fusion using cryo-electron tomography. We find that, unlike most retroviruses, EVs remain fusogenic after acidification and reneutralization. These results provide novel insights into the EV cargo delivery mechanism and an experimental approach to identify the EV fusion machinery.

14.
Cell Death Dis ; 12(11): 1059, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750357

RESUMO

Necroptosis is a regulated and inflammatory form of cell death. We, and others, have previously reported that necroptotic cells release extracellular vesicles (EVs). We have found that necroptotic EVs are loaded with proteins, including the phosphorylated form of the key necroptosis-executing factor, mixed lineage kinase domain-like kinase (MLKL). However, neither the exact protein composition, nor the impact, of necroptotic EVs have been delineated. To characterize their content, EVs from necroptotic and untreated U937 cells were isolated and analyzed by mass spectrometry-based proteomics. A total of 3337 proteins were identified, sharing a high degree of similarity with exosome proteome databases, and clearly distinguishing necroptotic and control EVs. A total of 352 proteins were significantly upregulated in the necroptotic EVs. Among these were MLKL and caspase-8, as validated by immunoblot. Components of the ESCRTIII machinery and inflammatory signaling were also upregulated in the necroptotic EVs, as well as currently unreported components of vesicle formation and transport, and necroptotic signaling pathways. Moreover, we found that necroptotic EVs can be phagocytosed by macrophages to modulate cytokine and chemokine secretion. Finally, we uncovered that necroptotic EVs contain tumor neoantigens, and are enriched with components of antigen processing and presentation. In summary, our study reveals a new layer of regulation during the early stage of necroptosis, mediated by the secretion of specific EVs that influences the microenvironment and may instigate innate and adaptive immune responses. This study sheds light on new potential players in necroptotic signaling and its related EVs, and uncovers the functional tasks accomplished by the cargo of these necroptotic EVs.


Assuntos
Morte Celular/imunologia , Vesículas Extracelulares/metabolismo , Imunidade/imunologia , Necroptose/imunologia , Proteômica/métodos , Humanos
15.
Beilstein J Nanotechnol ; 12: 878-901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34476169

RESUMO

Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials design through image analysis. Deep learning has the ability to identify abstract characteristics embedded within a data set, subsequently using that association to categorize, identify, and isolate subsets of the data. Scanning probe microscopy measures multimodal surface properties, combining morphology with electronic, mechanical, and other characteristics. In this review, we focus on a subset of deep learning algorithms, that is, convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data.

16.
Nat Commun ; 12(1): 4851, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381047

RESUMO

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Assuntos
Quimiocina CXCL10/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Regiões 3' não Traduzidas , Quimiocina CXCL10/genética , Proteína DEAD-box 58/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Monócitos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Biossíntese de Proteínas , RNA de Protozoário/metabolismo , Receptores Imunológicos/metabolismo , Ribossomos/metabolismo , Células THP-1
19.
Circulation ; 143(25): 2475-2493, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33793321

RESUMO

BACKGROUND: The role of epicardial fat (eFat)-derived extracellular vesicles (EVs) in the pathogenesis of atrial fibrillation (AF) has never been studied. We tested the hypothesis that eFat-EVs transmit proinflammatory, profibrotic, and proarrhythmic molecules that induce atrial myopathy and fibrillation. METHODS: We collected eFat specimens from patients with (n=32) and without AF (n=30) during elective heart surgery. eFat samples were grown as organ cultures, and the culture medium was collected every 2 days. We then isolated and purified eFat-EVs from the culture medium, and analyzed the EV number, size, morphology, specific markers, encapsulated cytokines, proteome, and microRNAs. Next, we evaluated the biological effects of unpurified and purified EVs on atrial mesenchymal stromal cells and endothelial cells in vitro. To establish a causal association between eFat-EVs and vulnerability to AF, we modeled AF in vitro using induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Microscopic examination revealed excessive inflammation, fibrosis, and apoptosis in fresh and cultured eFat tissues. Cultured explants from patients with AF secreted more EVs and harbored greater amounts of proinflammatory and profibrotic cytokines, and profibrotic microRNA, as well, than those without AF. The proteomic analysis confirmed the distinctive profile of purified eFat-EVs from patients with AF. In vitro, purified and unpurified eFat-EVs from patients with AF had a greater effect on proliferation and migration of human mesenchymal stromal cells and endothelial cells, compared with eFat-EVs from patients without AF. Last, whereas eFat-EVs from patients with and without AF shortened the action potential duration of induced pluripotent stem cell-derived cardiomyocytes, only eFat-EVs from patients with AF induced sustained reentry (rotor) in induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: We show, for the first time, a distinctive proinflammatory, profibrotic, and proarrhythmic signature of eFat-EVs from patients with AF. Our findings uncover another pathway by which eFat promotes the development of atrial myopathy and fibrillation.


Assuntos
Tecido Adiposo/patologia , Fibrilação Atrial/etiologia , Fibrilação Atrial/patologia , Vesículas Extracelulares/patologia , Miócitos Cardíacos/patologia , Pericárdio/patologia , Tecido Adiposo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Fibrilação Atrial/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Técnicas de Cultura de Órgãos , Pericárdio/metabolismo , Proteômica/métodos , Ratos
20.
Nat Commun ; 12(1): 1172, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608523

RESUMO

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Assuntos
Transporte Biológico/fisiologia , Eritrócitos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana/metabolismo , Fosforilação , Plasmodium falciparum/crescimento & desenvolvimento , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA